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1. INTRODUCTION

The purpose of this note is to provide a simple and effective solution to the problem
of spatial grid stiffness and the consequent timestep restriction that occurs when grids are
constructed with angular coordinates, or in any grid construction where the grid lines become
more closely spaced in one direction. Logically connected grids commonly generated with
polar or spherical coordinates in 2D or 3D have this difficulty. The north and south poles
of meridian grids are also prime examples.

Consider the single zone shown in Fig. 1a that appears as a rectangle that is much longer
in thex direction than in they direction. Such a zone is said to have a high aspect-ratio since
its length divided by its width1x/1y is much greater than one. For a velocity flowv that is
oriented mostly along the elongatedx direction two difficulties occur. The first and principal
problem is that for an explicit time advance the timestep is restricted by the time for a sound
wave to transit the small length scale1y, when, assuming a roughly isotropic gradient,
the actual gradient scale lengths are at the much larger distance1x. The second difficulty
is that forces oriented mainly along thex direction, if slightly skewed into they direction

1 The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the copyright covering this
paper, for governmental purposes is acknowledged.
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FIG. 1. (a) Rectangular high aspect–ratio zone with velocityv in thex direction; (b) Angular high-aspect-ratio
zone with velocityv in the radial direction.

due to truncation error, apply a large effective torque to this zone that can lead to spurious
hourglass-like distortions that destroy the entire calculation. To avoid these difficulties one
should not have high aspect–ratio zones in any calculation where the principal flow field
and gradient scales are oriented roughly parallel to the elongated zone direction. However,
it is not always possible to avoid this situation, as can be seen from considering the angular
wedge shown in Fig. 1b. Here the zone inscribed by pointsab0 has a length1R, where
R is the major radius, and a width of orderR1θ = 1R1θ . It thus has an aspect ratio of
1R/(1R1θ) = 1/1θ, which for an angular spacing of 1◦ results in an aspect ratio and
spatial grid stiffness factor of≈60. Since the major radiusR increases as one moves to
the right of point 0, eventuallyR1θ ≥ 1R, so that for a constant value of1R the zones
become about equal in both dimensions, giving roughly unit aspect ratio, and then reversing
with zones longer in the angular direction than radially.

An effective solution to both of the above noted problems is to replace the simple logically
connected grid with an unstructured one with zones of arbitrary, or properly restricted,
topology so that all zones always have an aspect ratio near unity [1]. However, other
difficulties arise in this case so that one may wish to preserve the simple logical grid
structure. First, the simple angular grid may have the important property that it supports
the limit of perfectly one-dimensional cylindrical or spherical symmetry in terms of the
radial coordinate [2, 3], a property that cannot be achieved with an arbitrary unstructured
grid [1]. In fact, it is true in general that changes in grid topology introduce numerical
perturbations into the solution, much like that seen with waves moving through a medium
with sharp changes in the index of refraction. Also, a simple grid structure (for instance, all
quads or hexes) facilitates the inclusion of physics such as the transport of radiation that
is more difficult to discretize using arbitrary zone topology [4]. Thus we wish to maintain
the simple grid structure obtained with a logical grid, while correcting the timestep and
hourglass difficulties that arise from the regions of these grids that have high aspect–ratio
zones.

To put this in a global perspective, consider the polar grid shown in Fig. 2 with a center of
convergence at pointO; we refer to the radial lines as “k-lines” and to the angular lines as
“ l -lines.” The distance between adjacent points along anl -line is R1θ, at some major radius
R, whereas the distance between adjacent points along ak-line is1R; both types of lines
may be unequally spaced. Points shown as open circles can be removed from the grid in
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FIG. 2. Angular grid with center of convergence at point. “O.” Solid dots are dynamical points; circles
denote nondynamical points; a “generalized zone” is delineated by pointsbf 5ghc32b; dashed lines are median
mesh in this region. VectorA is normal to linegh and has as its magnitude the distancegh; analogously forB.
R1θ ¿ 1R, so figure is not to scale.

one of two ways. First, they can just be eliminated directly, wherein thek-lines that contain
them terminate before reaching the center of convergence. This is a direct way to create an
unstructured grid from a logical one and has been used effectively in modeling flows on the
surface of a sphere, where it is referred to as a “reduced grid” model [5, 6]. It is important to
note that these researchers conclude that the reduced grid method “reduces the accuracy less
than either filtering or using implicit techniques” [5]. Implicit time differencing introduces a
“stabilizing denominator” that acts to compress all characteristic speeds so that they are less
than the local grid speed1x/1t [7]. This results in unwanted phase error in high-speed flow
calculations where the CFL timestep condition is both an accuracy and a stability criterion.
That is, implicit time differencing smooths dependent variables in a somewhat uncontrolled
manner. The solution presented herein is different from the reduced grid method in that
it retains the points shown as open circles in Fig. 2 and thus retains the underlying grid
topology and its previously noted favorable properties; however, our solution is like the
reduced grid method in that these points are removed from the dynamics of the calculation,
allowing the timestep restriction to be relaxed.

Our solution is illustrated by the following example. Suppose a purely 1D flow calculation
is performed on the 2D grid of Fig. 2, and we want the timestep to be set only by the CFL
number in the radial direction. First, the masses and forces associated with all the points
in Fig. 2 are computed using compatible finite volume differencing [8]. Then we add the
masses and forces associated with all points on anl -line to those of ther -axis, thek = 1
line of Fig. 2. However, we rotate the force by the angle between ther -axis and thek-line
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point where it is initially defined so that all forces are along ther direction. The points on
the r -axis become the “dynamical” points, because their velocities are advanced in time
by solving the momentum equation. The other points of anl -line are the “nondynamical,”
or enslaved, points. The velocities of these points are set equal to those of points on the
r -axis at the same value of major radius after an opposite rotation through the previously
mentioned angle. The work done by all forces is now calculated compatibility [8] with
respect to all zones; a staggered grid placement of dependent variables is assumed: position
and velocity at nodes; density, internal energy, and others in zones. The force addition step
is what ensures numerical stability based only on the scale length1R. Last, the coordinates
of all points are advanced in time for a Lagrangian calculation; if Eulerian, all variables are
fluxed with respect to the fixed grid, a Lagrangian step plus remap. The 2D grid is thus just
a somewhat clumsy device on which to perform a purely 1D computation.

The above idea is generalized in the remainder of this paper to achieve a grid that
effectively has nearly unit aspect ratio when viewed from only the locations of the dynamical
points. The underlying structure of the grid is maintained; spatial grid stiffness is eliminated
by making all of the points on certaink-lines nondynamical inside an initially determined
value of major radius, or distance from a tapered end. The masses and forces of these
nondynamical points are then “donated” to nearby dynamical points, and their velocities
enslaved by appropriate interpolations. One chooses how much spatial grid stiffness, if any,
is to be allowed in a calculation as part of the initialization. Thus at the initial time the
spatial scale lengths that the grid is capable of resolving are determined by the choice of
dynamical and nondynamical points associated with the underlying spatially stiff grid. The
underlying grid is logical in this paper but could be an unstructured grid; for example, a
soccer-ball tesellation of a sphere in 3D that retains the spatial grid stiffness difficulty in
the radial direction. Our exposition is in 2D; all changes needed for 3D are given. The basic
discretization method is compatible, control volume differencing of the fluid equations in
Lagrangian form as detailed in its various aspects in previous work [2, 3, 8–10].

2. FORM OF EQUATIONS AND GRID POINT DESIGNATION

In the form of control volume differencing that we utilize on a staggered spatial grid the
momentum equation is written as

1vp = Fp1t/Mp ≡
∑

z

f p
z1t/Mp, (1)

where1vp is the change in the velocity of a pointp in time1t,Fpis the total force on
this point, andMp is its mass. The total force on a point is composed of the corner forces
f p
z that act from the zonez, and onto the pointp, where the indicesz and p range over

all zones and points of the underlying grid. The exact construction of these forces (mean
zone pressure, subzone pressure, artificial viscosity, and material strength) utilizing the
coordinate–line and median meshes (solid lines and dashed lines, respectively, in Fig. 2)
is detailed in [8–10]. The important result that we refer to as “compatibility” of force and
work is given by the equation for the change in specific internal energyez of a zone in terms
of the work done by these same corner forces as

1ez = −
∑

p

f z
p · vn+1/2

p 1t/Mz, (2)
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whereMz is the mass of a zone, andf z
p = f p

z except that sums are performed over the lower
index with the upper one fixed. Also,vn+1/2

p is the average of the grid point velocity at the
old and new time level [8].

The grid shown in Fig. 2 is divided into sets of dynamical points (solid dots) and nondy-
namical points (open circles) by the following procedure. We create a template that lists the
points that are tagged dynamical on everyl -line. First, all points on the linek = 1 are tagged
dynamical, then we proceed from the linel = 1 and decide which additional points on an
l -line are also dynamical. The nextk-line to become dynamical afterk = 1 is k = kmax,

which occurs whenRθ ≥ α1R along anl -line, where (0.2≤ α ≤ 1) is the spatial grid
stiffness parameter set by the user. Once a point on ak-line is dynamical, all points at larger
major radii (largerl index) are also. Next, by comparing the broken line distances from
a point on anl -line to its two adjacent dynamical points, versus the localα1R between
l -lines, one decides if that point is also to be declared dynamical. At some outerl -line all
points are dynamical and the procedure is terminated. One now has two lists of points:
dynamical points with logical coordinates (k, l ) and the value of the integer stride index
to their nearest upper and lower neighborl -line dynamical points (if either is missing, the
stride index is zero), and nondynamical points with logical coordinates (k, l ) and the value
of the integer stride index to their nearest neighbor upper and lowerl -line dynamical points.
In addition, at the initial time, interpolation coefficients that enable one to donate force and
mass to the dynamical points from the nondynamical points, and velocity the other way, are
set. The exact form and use of these coefficients is discussed next.

3. MASS, FORCE, WORK, AND VELOCITY INTERPOLATION

First, all forces are calculated with respect to the underlying grid. It is assumed that these
forces obey a simple composition rule such that if the nondynamical points are erased the
primitive force, as calculated on the resulting larger grid stencil, is equal to that obtained by
adding the force computed on the nondynamical points to the dynamical ones (exceptions to
this rule are dealt with last). Although these forces must in general be rotated, our discussion
first omits this point, which is included later.

Both forces and masses are donated to their nearest neighbor dynamical points along an
l -line with coefficients of either one or one-half. For instance, in Fig. 2 all of the force and
mass of point3 is donated to pointc, and likewise, point2donates all force and mass to point
b, while point5 contributes one-half of its force and mass to each of pointsf andg. The
force and mass of all points along the linel = 2 in Fig. 2 are donated to the single dynamical
point on thek = 1 line, and inside this radius the calculation becomes one-dimensional.
The velocity is advanced on all dynamical points by means of Eq. (1). The work done must
be calculated using Eq. (2), which is written in terms of the undonated corner forcesf z

p.

The most straightforward way to do this is to setvn+1/2
p at the nondynamical points by

interpolating the knownvn+1/2
p from the dynamical points with the same coefficients, and

opposite angle of rotation, used to donate forces. Then Eq. (2) can be applied directly to
all zones of the underlying grid to yield a value of1ez for each zone. With area–weight
differencing [2, 8], the above procedure is necessary since it is the area–inertia and not
the nodal mass that is directly donated. Next, the velocityvn+1/2

p is discarded from the
nondynamical points;vn+1

p is then set at these points by interpolation from the neighboring
dynamical points, after a rotation, using coefficients that are ratios of the distance along the
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brokenl -line segment at the initial time to give a second-order-accurate interpolation. Last,
coordinates of all points are advanced in time.

Although all work has now been computed, our calculation of both density and specific
internal energy for zones containing nondynamical points is not complete. Indeed, when
looked at from only the dynamical points the quadrilateral zones of the underlying grid
of Fig. (2) become of quite general topology. Galilean invariance of Eq. (2) requires that∑

p fz
p = 0. That is, the corner forces must sum to zero inside a zone, and thus from Eq. (2),

the “change” in specific internal energy must be uniform in this “generalized zone”; an
example is the volume delineated by pointsbf5ghc32b in Fig. (2). Thus we average1ez

with respect to zone mass throughout all zones above and adjacent to any segment of an
l-line with dynamical endpoints. Although1ez is uniform within the generalized zones on
a timestep,ez can still vary with respect to the zones of the underlying grid due to other
physical processes, such as the transport of radiation, that are performed on the underlying
grid structure.

The zone density is also averaged in the same manner as1ez to define a mean density
for the generalized topology zones. This is done because we must define new “subzonal”
densities in the generalized topology zones in order to calculate subzonal pressure forces
that resist grid tangling [9]. These subzonal densities are set by averaging the density, using
the Lagrangian subzonal corner massmp

z , so that two subzone densities are defined along the
top and along the bottom of eachl -line segment containing dynamical endpoints; subzonal
pressure forces are then calculated with respect to the underlying grid as before [9].

Last, the assumption previously made of a “composition rule” regarding the addition
of forces is not always valid for our edge-centered artificial viscosity. This is because the
artificial viscosity is velocity-dependent [10]. If an edge is formed using two nondynamical
points whose velocities are interpolated from the same dynamical point velocities, then this
edge is not used to define an artificial viscosity force contribution. This situation occurs
along thel -line of Fig. 2. Thus, alongl -lines the artificial viscosity is defined separately and
then added into the respective corner forces of each two dynamical point pairs along the
givenl -line. This edge viscosity force is computed as before [10], but using only dynamical
grid point data and a single median mesh vector that is the arithmetic average of those
median mesh vectors lying between each twol -line dynamical point pairs. However, the
artificial viscosity force along allk-line edges is still valid since it is computed from velocity
data derived from different sets of dynamical points.

3.1. Rotation of Force and Velocity

It is apparent from the example given in the Introduction and from the curved grid
of Fig. (2) that the force and velocity vectors should be rotated before the interpolation
factors are applied in order to obtain exactly the limit of one-dimensional cylindrical or
spherical flow. The argument for employing a rotation when the flow field is not totally one-
dimensional, but where the gradient scale lengths of the problem are still approximately
isotropic based on the spacing of the dynamical points, relies on the fact that pressure always
acts normal to the grid lines and thus produces a force in approximately the local outward
normalĉp direction. Thus, if the grid curvature is locally, approximately constant about a
point (as it is for well-resolved spatial gradients), and the pressure force about one point is
to be donated to a nearby point, then points should be made nondynamical on either side
of a dynamical point in a symmetrical manner so that changes in the net donated force due
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to grid curvature will be close to zero. However, this means removing points by simple
factors of 2 or 4 and thus creating specially preferred numbers ofk-lines for performing
calculations. This we wish to avoid. The net effect of a symmeterical removal of points is
instead mimicked by rotating the donated force through the angle between the local outward
normal directions of a dynamical point and its nondynamical neighbors. As noted, this gives
the correct symmetry limit when pressure is constant between adjacentl -lines.

The angle of rotation must be suitably defined and allowed to vary with time. The outward
normal to thel -line surfaces of the dynamical points of Fig. 2, denoted asĉp, at point p
is defined by fitting circles (2D), or spheres (3D), through a given dynamical point and its
nearest neighborl -line dynamical points by the prescriptions given as Eq. (8) of [2] and
Eq. (15) of [3]; the former is repeated here as

ĉ = (B2A + A2B)/|B2A + A2B|, (3)

where the vectorsA andB are shown in Fig. (2) to yield a value ofĉ at pointh.
It is imperative that all of the interpolations performed utilize time-independent coeffi-

cients; else when stressed, such calculations will exhibit negative feedback from the non-
dynamical points that will result in numerical instability. To avoid this problem we employ
the following procedure to computeĉp at the nondynamical points at a later time, given that
we always knoŵcp at all dynamical points from Eq. (3). At the initial time the ratio of the
angle between every nondynamical point and each of its two neighbor dynamical points,
divided by the angle between these neighbor dynamical points, is stored as an interpolation
fraction; they sum to unity. Then the value ofĉ at a nondynamical point is obtained in time
from those of its two neighbor dynamical points by the following steps: Find the angle
between the two dynamical point neighbors (arccos (ĉ1 · ĉ2), for points 1 and 2) of a non-
dynamical point; rotate botĥc1 andĉ2 through the respective angles found by multiplying
arccos (̂c1 · ĉ2) by the respective angular fraction set initially; multiply these vectors by the
interpolation factors used to set the advanced velocityvn+1

p at the nondynamical point; add
the result and renormalize the magnitude to unity. Theĉ’s along anl -line that contains only
one dynamical point (for example, thel = 2 line of Fig. 2) are fixed at their initial value.
Now, given theĉp vectors at all points, the cosine of the angle between any two points is
well defined and all rotations in 2D are trivial.

A rotation in 2D of a vectora with respect to an angle cosθ ≡ ĉ1 · ĉ2, and with a sense
of directionω̂ defined by ˆω sinθ ≡ ĉ1× ĉ2, resulting in a vectora′ can be written as

a′ = acosθ + (ω̂ × a) sinθ. (4)

This expression enables us to derive the equivalent one that is needed to perform rotations in
3D where a vectorF may not lie in the plane of̂c1 andĉ2. SeparatingF into F‖ ≡ (F · ω̂)ω̂
andF⊥ = F− F‖, substitutingF⊥ into Eq. (4) asa, and then adding the componentF‖ that
is unchanged by the rotation to the rhs, one arrives at the result

F′ = F cosθ + (ω̂ × F) sinθ + (1− cosθ)(F · ω̂) ω̂. (5)

This is the only change necessary to carry our procedure over into three dimensions.
Rotations only give accurate answers when performed with respect to points with nearly

constant curvature. Large errors can result if rotations are performed when short spatial scale
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hourglass-like motions are present, since vector direction is very sensitive to these short
scale distortions. Thus, rotations are not performed if the curvature, as measured between
the dynamical points of anl -line, varies substantially about a point. The amount of rotation
performed is automated by letting cosθ → χp cosθ + (1− χp), whereχp lies between
zero and one and is determined by the RMS curvature deviation about pointp as defined
by Eq. (34) in [3]. (Ifχp = 0, then cosθ = 1.) Althoughχp is defined directly only with
respect to the dynamical points, it is interpolated to the nondynamical points by means of
the coefficients used to setvn+1

p at these points.
As a simple illustration of our interpolation procedure, consider the example given in

the Introduction where the 2D grid of Fig. 2 becomes 1D by making all points that are
not on thek = 1 line nondynamical. For this case all interpolation coefficients are unity;
all ĉp direction vectors are fixed in time at their initial values so that all rotation angles
are fixed in time. The specific internal energy and mean zone density are uniform between
adjacentl -lines; the subzone corner density has only two distinct values between adjacent
l -lines. The artificial viscosity acts only between adjacentl -lines. This is because eachl -line
contains only one dynamical point, and therefore an edge cannot be defined along these
l -lines.

4. TIMESTEP DETERMINATION

The force addition procedure enables us to determine the overall timestep using only the
distances between adjacent dynamical points. An effective wave speedc∗ must be defined
between these points. This is done in conjuction with the artificial viscosity as follows.
The maximum value of the zone sound speed squaredc2

s of the zones adjacent to an edge
is added to the edge artificial viscosity sound speed squared (the scalar part of the edge

artificial viscosity isρC2
q [10]) to obtainc∗ ≡

√
c2

s + C2
q. The new timestep1tn+1 is then

determined on the predictor step as

1tn+1 = min
(

f1(1x)ni, j
/

c∗, 0.8 f1
/
(∇ · v)nz

)
, (6)

where (0.25≤ f1 ≤ 0.5) and (1x)ni, j is the straight line distance between adjacent dynam-
ical pointsi and j at time leveln. The first entry on the rhs of Eq. (6) is taken over all of
the edges connected by two adjacent dynamical points, while the second entry is defined
with respect to all zones of the underlying grid and requires that these zones not develop
negative volumes. Since the second entry is the fractional volume change of a zone in a
timestep, it does not reflect spatial grid stiffness. The predictor step as given by Eqs. (1)
and (2) with forcesf p

z computed at then time level is numerically unstable with respect
to pressure forces. Stability and second-order accuracy in time are achieved by applying a
single corrector step where all forcesf p

z are centered at then+ 1/2 time level, after which
all variables are advanced in time.

5. NUMERICAL EXAMPLES AND CONCLUSIONS

As the first numerical example of the effectiveness of our procedure we choose Noh’s
problem. Here a shock wave propagates outward from the origin at the initial time; the
detailed setup and result are given in [3, 10, 11]. It is run on an angular grid with 101×
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FIG. 3. (a) Noh’s problem: inner portion of initial grid. White squares center on dynamical points. (b) Noh’s
problem: full grid 101× 101 at final timet = 0.6. (c) Noh’s problem: contours of density at timet = 0.6.
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FIG. 3—Continued

101(k, l ) lines forming a 90◦ quadrant. Thus, the initial spatial grid stiffness near the origin
is about 70 : 1. This spherical problem is run in 2D cylindrical geometry using control
volume differencing, and with symmetry corrections [2]. The grid stiffness parameterα in
the initialization is set to unity (R1θ ≈ 1R). In Fig. 3a the inner portion of the grid is shown
at the initial time with the dynamical points labeled as white squares. On thel = 2 line only
the two pointsk = 1, 101 are dynamical, on thel = 3 line the pointsk = 1, 33, 65, 101 are
dynamical, etc. Forl ≥ 65 all points are dynamical. The entire grid is shown in Fig. 3b at the
final time of 0.6; a contour plot of the density at this time is given in Fig. 3c. This result agrees
with previous large-angle calculations [10]. The calculation required about 900 timesteps,
the same as needed for a 1D calculation in spherical coordinates [f1 = 0.25 in Eq. (6)];
all spatial grid stiffness has been eliminated. The computational overhead associated with
our interpolation procedure is found to be a negligible cost compared to that of the overall
timestep.

The next example is a velocity-driven, spherical implosion that has a self-similar solu-
tion. The detailed setup and results are given in [2, 3]. This problem is run in 2D cylin-
drical geometry using an initial angular grid with 51k-lines and 101 radiall -lines filling
a wedge of 10◦ with respect to ther -axis (0.2◦ zoning). The initial grid stiffness param-
eter α is 0.2 (R1θ ≈ 0.21R) or 5 : 1 instead of the 300 : 1 stiffness value that would
result near the origin. The inner portion of the initial grid is shown in Fig. 4a with the
dynamical points labeled as white squares. On thel = 2 line only the single pointk = 1 is
dynamical; on thel = 3 line pointsk = 1, 51 are dynamical; on thel = 10 line the points
k = 1, 11, 21, 28, 36, 43, 51 are dynamical. Forl ≥ 59 all points are dynamical. Figure 4b
shows the inner portion of the grid at a time of 0.8, after the shock wave has reflected
from the origin and is moving outward; a contour plot of density at this time is given in
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FIG. 4. (a) Self-similar implosion: inner portion of initial grid, 10◦ wedge. White squares center on dynamical
points. (b) Self-similar implosion: inner portion of grid at final timet = 0.8. Shock wave is moving out as seen by
compression wave atR≈ 0.11. (c) Self-similar implosion: contours of density at timet = 0.6. (d) Self-similar
implosion: all points are dynamical. Grid is shown at timet ≈ 0.7 when calculation terminates due to hourglass-
type instability.
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FIG. 4—Continued

Fig. 4c. These results are essentially the same as those given previously using large-angle
zoning [2, 3]. It took just less than 2000 timesteps to run to the final time. If this calcula-
tion is performed without spatial grid stiffness removal the timestep decreases rapidly as
the shock wave propagates into the region of increasingly high aspect ratio. It terminates
due to a virulent hourglass-like distortion at aboutt = 0.7. The final grid in this case is
shown in Fig. 4d. Grid distortion occurs atr ≈ 0.2, where the zone aspect ratio is about
15 : 1 initially. Subzonal pressure forces do not stabilize this instability, and in fact make
it appear somewhat sooner than with these forces absent. The interpolation procedure em-
ployed here removes this sensitivity to hourglass instability because the grid effectively
has the aspect ratio of the generalized zones that are formed only by the dynamical grid
points.

In conclusion, it is found that our procedure relaxes the timestep restriction associ-
ated with a grid that contains high aspect-ratio zones and prevents the development of
an hourglass-type instability that can prevent spatially stiff calculations from being run to
completion, while preserving the favorable symmetry and discretization properties of the
simple underlying grid. Although only 1D examples have been shown, other “endurance-
type” calculations have been performed to test the robustness of the method. It is found
that the robustness of the calculations is not adversely affected by the presence of many
nondynamical points if the complete interpolation procedure as detailed herein is imple-
mented. The spatial grid resolution is made more isotropic as is desired, and the regularity
conditions as a center of convergence is approached are automatically satisfied.
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