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1. INTRODUCTION

The purpose of this note is to provide a simple and effective solution to the proble
of spatial grid stiffness and the consequent timestep restriction that occurs when grids
constructed with angular coordinates, or in any grid construction where the grid lines bec
more closely spaced in one direction. Logically connected grids commonly generated v
polar or spherical coordinates in 2D or 3D have this difficulty. The north and south pol
of meridian grids are also prime examples.

Consider the single zone shown in Fig. la that appears as a rectangle that is much Ic
in thex direction than in they direction. Such a zone is said to have a high aspect-ratio sin
its length divided by its widtl\ x / Ay is much greater than one. For a velocity fledhat is
oriented mostly along the elongatedirection two difficulties occur. The first and principal
problem is that for an explicit time advance the timestep is restricted by the time for a sol
wave to transit the small length scatey, when, assuming a roughly isotropic gradient,
the actual gradient scale lengths are at the much larger distexicEhe second difficulty
is that forces oriented mainly along thedirection, if slightly skewed into thg direction

1 The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering
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FIG.1. (a)Rectangularhigh aspect-ratio zone with veloeitythex direction; (b) Angular high-aspect-ratio
zone with velocityv in the radial direction.

due to truncation error, apply a large effective torque to this zone that can lead to spuri
hourglass-like distortions that destroy the entire calculation. To avoid these difficulties
should not have high aspect-ratio zones in any calculation where the principal flow fi
and gradient scales are oriented roughly parallel to the elongated zone direction. Howe
it is not always possible to avoid this situation, as can be seen from considering the ang
wedge shown in Fig. 1b. Here the zone inscribed by paih has a lengt\ R, where

R is the major radius, and a width of ordBA6® = ARAS. It thus has an aspect ratio of
AR/(ARA6) = 1/A6, which for an angular spacing of tesults in an aspect ratio and
spatial grid stiffness factor o£60. Since the major radiuR increases as one moves to
the right of point 0, eventuall)RA6 > AR, so that for a constant value &fR the zones
become about equal in both dimensions, giving roughly unit aspect ratio, and then rever:
with zones longer in the angular direction than radially.

An effective solution to both of the above noted problems is to replace the simple logica
connected grid with an unstructured one with zones of arbitrary, or properly restricts
topology so that all zones always have an aspect ratio near unity [1]. However, ot
difficulties arise in this case so that one may wish to preserve the simple logical g
structure. First, the simple angular grid may have the important property that it suppc
the limit of perfectly one-dimensional cylindrical or spherical symmetry in terms of th
radial coordinate [2, 3], a property that cannot be achieved with an arbitrary unstructu
grid [1]. In fact, it is true in general that changes in grid topology introduce numeric
perturbations into the solution, much like that seen with waves moving through a medi
with sharp changes in the index of refraction. Also, a simple grid structure (for instance,
guads or hexes) facilitates the inclusion of physics such as the transport of radiation
is more difficult to discretize using arbitrary zone topology [4]. Thus we wish to maintai
the simple grid structure obtained with a logical grid, while correcting the timestep a
hourglass difficulties that arise from the regions of these grids that have high aspect-r
zones.

To put this in a global perspective, consider the polar grid shown in Fig. 2 with a center
convergence at poir®; we refer to the radial lines a&-lines” and to the angular lines as
“|-lines.” The distance between adjacent points aloriglane is RA6, at some major radius
R, whereas the distance between adjacent points alérlina is A R; both types of lines
may be unequally spaced. Points shown as open circles can be removed from the gr
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FIG. 2. Angular grid with center of convergence at poin©." Solid dots are dynamical points; circles
denote nondynamical points; a “generalized zone” is delineated by gfibghc32b; dashed lines are median
mesh in this region. Vectok is normal to linegh and has as its magnitude the distagbganalogously foB.
RA6 « AR, so figure is not to scale.

one of two ways. First, they can just be eliminated directly, whereikirgees that contain
them terminate before reaching the center of convergence. This is a direct way to creal
unstructured grid from a logical one and has been used effectively in modeling flows on
surface of a sphere, where it is referred to as a “reduced grid” model [5, 6]. It is importan
note that these researchers conclude that the reduced grid method “reduces the accura«
than either filtering or using implicit techniques” [5]. Implicit time differencing introduces
“stabilizing denominator” that acts to compress all characteristic speeds so that they are
than the local grid speefix/ At [7]. This results in unwanted phase error in high-speed flov
calculations where the CFL timestep condition is both an accuracy and a stability criteri
Thatis, implicit time differencing smooths dependent variables in a somewhat uncontrol
manner. The solution presented herein is different from the reduced grid method in 1
it retains the points shown as open circles in Fig. 2 and thus retains the underlying ¢
topology and its previously noted favorable properties; however, our solution is like t
reduced grid method in that these points are removed from the dynamics of the calculat
allowing the timestep restriction to be relaxed.

Our solutionis illustrated by the following example. Suppose a purely 1D flow calculatic
is performed on the 2D grid of Fig. 2, and we want the timestep to be set only by the C
number in the radial direction. First, the masses and forces associated with all the pc
in Fig. 2 are computed using compatible finite volume differencing [8]. Then we add t
masses and forces associated with all points ohlare to those of the -axis, thek = 1
line of Fig. 2. However, we rotate the force by the angle between-tizds and thek-line
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point where it is initially defined so that all forces are alongttitérection. The points on
ther-axis become the “dynamical” points, because their velocities are advanced in ti
by solving the momentum equation. The other points df-kme are the “nondynamical,”
or enslaved, points. The velocities of these points are set equal to those of points on
r-axis at the same value of major radius after an opposite rotation through the previot
mentioned angle. The work done by all forces is now calculated compatibility [8] wi
respect to all zones; a staggered grid placement of dependent variables is assumed: po
and velocity at nodes; density, internal energy, and others in zones. The force addition
is what ensures numerical stability based only on the scale lexBth.ast, the coordinates
of all points are advanced in time for a Lagrangian calculation; if Eulerian, all variables ¢
fluxed with respect to the fixed grid, a Lagrangian step plus remap. The 2D grid is thus |
a somewhat clumsy device on which to perform a purely 1D computation.

The above idea is generalized in the remainder of this paper to achieve a grid t
effectively has nearly unit aspect ratio when viewed from only the locations of the dynami
points. The underlying structure of the grid is maintained; spatial grid stiffness is eliminat
by making all of the points on certakilines nondynamical inside an initially determined
value of major radius, or distance from a tapered end. The masses and forces of
nondynamical points are then “donated” to nearby dynamical points, and their velocit
enslaved by appropriate interpolations. One chooses how much spatial grid stiffness, if
is to be allowed in a calculation as part of the initialization. Thus at the initial time th
spatial scale lengths that the grid is capable of resolving are determined by the choic
dynamical and nondynamical points associated with the underlying spatially stiff grid. T
underlying grid is logical in this paper but could be an unstructured grid; for example,
soccer-ball tesellation of a sphere in 3D that retains the spatial grid stiffness difficulty
the radial direction. Our exposition is in 2D; all changes needed for 3D are given. The be
discretization method is compatible, control volume differencing of the fluid equations
Lagrangian form as detailed in its various aspects in previous work [2, 3, 8-10].

2. FORM OF EQUATIONS AND GRID POINT DESIGNATION

In the form of control volume differencing that we utilize on a staggered spatial grid tt
momentum equation is written as

Avp = FpAt/Mp = fPAL/M,, (1)
z

where Avy, is the change in the velocity of a poiptin time At, Fis the total force on
this point, andM, is its mass. The total force on a point is composed of the corner forc
fP that act from the zone, and onto the poinp, where the indicegz and p range over
all zones and points of the underlying grid. The exact construction of these forces (m
Zone pressure, subzone pressure, artificial viscosity, and material strength) utilizing
coordinate—line and median meshes (solid lines and dashed lines, respectively, in Fi
is detailed in [8—10]. The important result that we refer to as “compatibility” of force an
work is given by the equation for the change in specific internal engrgfya zone in terms
of the work done by these same corner forces as

Ag, ==Y 2. Vit2At/M,, 2)
p
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whereM, is the mass of a zone, ahfl= f} except that sums are performed over the lowe
index with the upper one fixed. Alsu?,“/2 is the average of the grid point velocity at the
old and new time level [8].

The grid shown in Fig. 2 is divided into sets of dynamical points (solid dots) and nonc
namical points (open circles) by the following procedure. We create a template that lists
points that are tagged dynamical on eveliye. First, all points on the link = 1 are tagged
dynamical, then we proceed from the lihe- 1 and decide which additional points on an
I-line are also dynamical. The nekiline to become dynamical aftér= 1 is k = Kpax,
which occurs wherR9 > o AR along anl-line, where (2 < « < 1) is the spatial grid
stiffness parameter set by the user. Once a pointieliree is dynamical, all points at larger
major radii (largell index) are also. Next, by comparing the broken line distances frol
a point on arl-line to its two adjacent dynamical points, versus the lecAlR between
[-lines, one decides if that point is also to be declared dynamical. At someldirterall
points are dynamical and the procedure is terminated. One now has two lists of poi
dynamical points with logical coordinatek, () and the value of the integer stride index
to their nearest upper and lower neighbdine dynamical points (if either is missing, the
stride index is zero), and nondynamical points with logical coordin&td3 &nd the value
of the integer stride index to their nearest neighbor upper and lolirex dynamical points.

In addition, at the initial time, interpolation coefficients that enable one to donate force ¢
mass to the dynamical points from the nondynamical points, and velocity the other way,
set. The exact form and use of these coefficients is discussed next.

3. MASS, FORCE, WORK, AND VELOCITY INTERPOLATION

First, all forces are calculated with respect to the underlying grid. It is assumed that th
forces obey a simple composition rule such that if the nondynamical points are erasec
primitive force, as calculated on the resulting larger grid stencil, is equal to that obtained
adding the force computed on the nondynamical points to the dynamical ones (exceptiol
this rule are dealt with last). Although these forces must in general be rotated, our discus
first omits this point, which is included later.

Both forces and masses are donated to their nearest neighbor dynamical points alor
[-line with coefficients of either one or one-half. For instance, in Fig. 2 all of the force al
mass of poinBis donated to point, and likewise, poin donates all force and mass to point
b, while point5 contributes one-half of its force and mass to each of pdindsidg. The
force and mass of all points along the line 2 in Fig. 2 are donated to the single dynamical
point on thek = 1 line, and inside this radius the calculation becomes one-dimension
The velocity is advanced on all dynamical points by means of Eq. (1). The work done m
be calculated using Eq. (2), which is written in terms of the undonated corner figrces
The most straightforward way to do this is to s;%l*l/z at the nondynamical points by
interpolating the knowr\v"}“/2 from the dynamical points with the same coefficients, an
opposite angle of rotation, used to donate forces. Then Eq. (2) can be applied directl
all zones of the underlying grid to yield a value &g, for each zone. With area—weight
differencing [2, 8], the above procedure is necessary since it is the area—inertia and
the nodal mass that is directly donated. Next, the velodg)t‘sﬂ/z is discarded from the
nondynamical pointsxf,‘ﬁ1 is then set at these points by interpolation from the neighborin
dynamical points, after a rotation, using coefficients that are ratios of the distance along
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brokenl-line segment at the initial time to give a second-order-accurate interpolation. La
coordinates of all points are advanced in time.

Although all work has now been computed, our calculation of both density and spec
internal energy for zones containing nondynamical points is not complete. Indeed, wi
looked at from only the dynamical points the quadrilateral zones of the underlying g
of Fig. (2) become of quite general topology. Galilean invariance of Eq. (2) requires tt
>_pfp = 0. Thatis, the corner forces must sum to zero inside a zone, and thus from Eq.
the “change” in specific internal energy must be uniform in this “generalized zone”; :
example is the volume delineated by poibfsghc32b in Fig. (2). Thus we averagae,
with respect to zone mass throughout all zones above and adjacent to any segment «
I-line with dynamical endpoints. Althoughe, is uniform within the generalized zones on
a timestepg, can still vary with respect to the zones of the underlying grid due to othe
physical processes, such as the transport of radiation, that are performed on the under
grid structure.

The zone density is also averaged in the same manngeat define a mean density
for the generalized topology zones. This is done because we must define new “subzo
densities in the generalized topology zones in order to calculate subzonal pressure fc
that resist grid tangling [9]. These subzonal densities are set by averaging the density, u
the Lagrangian subzonal corner mags so that two subzone densities are defined along th
top and along the bottom of eaktiine segment containing dynamical endpoints; subzone
pressure forces are then calculated with respect to the underlying grid as before [9].

Last, the assumption previously made of a “composition rule” regarding the additi
of forces is not always valid for our edge-centered artificial viscosity. This is because 1
artificial viscosity is velocity-dependent [10]. If an edge is formed using two nondynamic
points whose velocities are interpolated from the same dynamical point velocities, then
edge is not used to define an artificial viscosity force contribution. This situation occt
along thd-line of Fig. 2. Thus, alonttlines the artificial viscosity is defined separately and
then added into the respective corner forces of each two dynamical point pairs along
givenl-line. This edge viscosity force is computed as before [10], but using only dynamic
grid point data and a single median mesh vector that is the arithmetic average of th
median mesh vectors lying between each twime dynamical point pairs. However, the
artificial viscosity force along ak-line edges is still valid since it is computed from velocity
data derived from different sets of dynamical points.

3.1. Rotation of Force and Velocity

It is apparent from the example given in the Introduction and from the curved gr
of Fig. (2) that the force and velocity vectors should be rotated before the interpolati
factors are applied in order to obtain exactly the limit of one-dimensional cylindrical «
spherical flow. The argument for employing a rotation when the flow field is not totally on
dimensional, but where the gradient scale lengths of the problem are still approximat
isotropic based on the spacing of the dynamical points, relies on the fact that pressure al
acts normal to the grid lines and thus produces a force in approximately the local outw
normalg, direction. Thus, if the grid curvature is locally, approximately constant about
point (as it is for well-resolved spatial gradients), and the pressure force about one poir
to be donated to a nearby point, then points should be made nondynamical on either
of a dynamical point in a symmetrical manner so that changes in the net donated force
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to grid curvature will be close to zero. However, this means removing points by simy
factors of 2 or 4 and thus creating specially preferred numbeksliokes for performing
calculations. This we wish to avoid. The net effect of a symmeterical removal of points
instead mimicked by rotating the donated force through the angle between the local outv
normal directions of a dynamical point and its nondynamical neighbors. As noted, this gi
the correct symmetry limit when pressure is constant between adjaliees.

The angle of rotation must be suitably defined and allowed to vary with time. The outw:e
normal to the-line surfaces of the dynamical points of Fig. 2, denote&asat point p
is defined by fitting circles (2D), or spheres (3D), through a given dynamical point and
nearest neighbdrline dynamical points by the prescriptions given as Eq. (8) of [2] an
Eq. (15) of [3]; the former is repeated here as

¢ = (B%A + A’B)/|B°A + A’B|, )

where the vectoréd andB are shown in Fig. (2) to yield a value dfat pointh.

It is imperative that all of the interpolations performed utilize time-independent coef
cients; else when stressed, such calculations will exhibit negative feedback from the r
dynamical points that will result in numerical instability. To avoid this problem we emplc
the following procedure to compuig at the nondynamical points at a later time, given tha
we always knowg, at all dynamical points from Eq. (3). At the initial time the ratio of the
angle between every nondynamical point and each of its two neighbor dynamical poi
divided by the angle between these neighbor dynamical points, is stored as an interpolz
fraction; they sum to unity. Then the value@t a nondynamical point is obtained in time
from those of its two neighbor dynamical points by the following steps: Find the anc
between the two dynamical point neighbors (arc@gs §,), for points 1 and 2) of a non-
dynamical point; rotate bot&y and¢, through the respective angles found by multiplying
arccos §; - ;) by the respective angular fraction set initially; multiply these vectors by th
interpolation factors used to set the advanced velm’gj‘(f/ at the nondynamical point; add
the result and renormalize the magnitude to unity. ¥s@long an -line that contains only
one dynamical point (for example, the= 2 line of Fig. 2) are fixed at their initial value.
Now, given theg, vectors at all points, the cosine of the angle between any two points
well defined and all rotations in 2D are trivial.

A rotation in 2D of a vectora with respect to an angle cés= ¢; - &, and with a sense
of directiona defined byw'sing = €; x &, resulting in a vectoa’ can be written as

a = acosd + (& x a) sine. (4)

This expression enables us to derive the equivalent one that is needed to perform rotatic
3D where a vectoF may not lie in the plane df; and¢,. Separating- into F| = (F - ®)®
andF; = F — Fy, substituting=, into Eq. (4) asa, and then adding the componéfjtthat

is unchanged by the rotation to the rhs, one arrives at the result

F' = Fcosh + (& x F)sing + (1 — cost)(F - &) &. (5)
This is the only change necessary to carry our procedure over into three dimensions.

Rotations only give accurate answers when performed with respect to points with ne
constant curvature. Large errors can result if rotations are performed when short spatial <
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hourglass-like motions are present, since vector direction is very sensitive to these s
scale distortions. Thus, rotations are not performed if the curvature, as measured betv
the dynamical points of anline, varies substantially about a point. The amount of rotatiol
performed is automated by letting ads> x, cost + (1 — xp), where x, lies between
zero and one and is determined by the RMS curvature deviation aboutgpamtefined
by Eq. (34) in [3]. (If xp, = 0, then co® = 1.) Althoughx, is defined directly only with
respect to the dynamical points, it is interpolated to the nondynamical points by mean:
the coefficients used to sv;@“ at these points.

As a simple illustration of our interpolation procedure, consider the example given
the Introduction where the 2D grid of Fig. 2 becomes 1D by making all points that a
not on thek = 1 line nondynamical. For this case all interpolation coefficients are unity
all €, direction vectors are fixed in time at their initial values so that all rotation angle
are fixed in time. The specific internal energy and mean zone density are uniform betw
adjacent-lines; the subzone corner density has only two distinct values between adjac
I-lines. The artificial viscosity acts only between adjaddirtes. This is because ealkcline
contains only one dynamical point, and therefore an edge cannot be defined along tl
[-lines.

4. TIMESTEP DETERMINATION

The force addition procedure enables us to determine the overall timestep using only
distances between adjacent dynamical points. An effective wave speaast be defined
between these points. This is done in conjuction with the artificial viscosity as follow
The maximum value of the zone sound speed squeged the zones adjacent to an edge
is added to the edge artificial viscosity sound speed squared (the scalar part of the ¢
artificial viscosity iS,oCé [10]) to obtainc* =  /c2 + C2. The new timestept"** is then
determined on the predictor step as

At = min( fy(AX)]; /c*, 0.8f1/(V - v)}), (6)

where (025 < f; < 0.5) and Ax); is the straight line distance between adjacent dynarr
ical pointsi and j at time leveln. The first entry on the rhs of Eq. (6) is taken over all of
the edges connected by two adjacent dynamical points, while the second entry is def
with respect to all zones of the underlying grid and requires that these zones not deve
negative volumes. Since the second entry is the fractional volume change of a zone
timestep, it does not reflect spatial grid stiffness. The predictor step as given by Egs.
and (2) with forced? computed at tha time level is numerically unstable with respect
to pressure forces. Stability and second-order accuracy in time are achieved by applyi
single corrector step where all forc8sare centered at the+ 1/2 time level, after which
all variables are advanced in time.

5. NUMERICAL EXAMPLES AND CONCLUSIONS

As the first numerical example of the effectiveness of our procedure we choose NC
problem. Here a shock wave propagates outward from the origin at the initial time; 1
detailed setup and result are given in [3, 10, 11]. It is run on an angular grid witkx 101
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problem: full grid 101x 101 at final tim& = 0.6. (c) Noh’s problem: contours of density at tihe= 0.6.
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FIG. 3—Continued

101(¢k, I lines forming a 90 quadrant. Thus, the initial spatial grid stiffness near the origi
is about 70:1. This spherical problem is run in 2D cylindrical geometry using contr
volume differencing, and with symmetry corrections [2]. The grid stiffness paramaéter
theinitialization is setto unityRA6 ~ AR). In Fig. 3a the inner portion of the grid is shown
at the initial time with the dynamical points labeled as white squares. Anth2line only
the two pointk = 1, 101 are dynamical, on the= 3 line the pointk = 1, 33, 65, 101 are
dynamical, etc. Fdr > 65 all points are dynamical. The entire grid is shown in Fig. 3b at th
final time of 0.6; a contour plot of the density at this time is given in Fig. 3c. This resultagre
with previous large-angle calculations [10]. The calculation required about 900 timeste
the same as needed for a 1D calculation in spherical coordinftes (.25 in Eq. (6)];

all spatial grid stiffness has been eliminated. The computational overhead associated
our interpolation procedure is found to be a negligible cost compared to that of the ove
timestep.

The next example is a velocity-driven, spherical implosion that has a self-similar so
tion. The detailed setup and results are given in [2, 3]. This problem is run in 2D cyli
drical geometry using an initial angular grid with &dlines and 101 radidtlines filling
a wedge of 10 with respect to the-axis (0.2 zoning). The initial grid stiffness param-
etera is 0.2 (RA6 ~ 0.2AR) or 5:1 instead of the 300:1 stiffness value that would
result near the origin. The inner portion of the initial grid is shown in Fig. 4a with th
dynamical points labeled as white squares. Orl the? line only the single poirk = 1 is
dynamical; on thé = 3 line pointsk = 1, 51 are dynamical; on the= 10 line the points
k=1,11 21 28 36,43 51 are dynamical. Fdr> 59 all points are dynamical. Figure 4b
shows the inner portion of the grid at a time of 0.8, after the shock wave has reflec
from the origin and is moving outward; a contour plot of density at this time is given i
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(a) Self-similar implosion: inner portion of initial grid, 1&edge. White squares center on dynamical

points. (b) Self-similar implosion: inner portion of grid at final tine- 0.8. Shock wave is moving out as seen by
compression wave & ~ 0.11 (c) Self-similar implosion: contours of density at tirhe= 0.6. (d) Self-similar
implosion: all points are dynamical. Grid is shown at titree 0.7 when calculation terminates due to hourglass-

type instability.
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Fig. 4c. These results are essentially the same as those given previously using large-:
zoning [2, 3]. It took just less than 2000 timesteps to run to the final time. If this calcul
tion is performed without spatial grid stiffness removal the timestep decreases rapidly
the shock wave propagates into the region of increasingly high aspect ratio. It termine
due to a virulent hourglass-like distortion at about 0.7. The final grid in this case is
shown in Fig. 4d. Grid distortion occurs at> 0.2, where the zone aspect ratio is about
15:1 initially. Subzonal pressure forces do not stabilize this instability, and in fact ma
it appear somewhat sooner than with these forces absent. The interpolation procedure
ployed here removes this sensitivity to hourglass instability because the grid effectiv
has the aspect ratio of the generalized zones that are formed only by the dynamical
points.

In conclusion, it is found that our procedure relaxes the timestep restriction assc
ated with a grid that contains high aspect-ratio zones and prevents the developmer
an hourglass-type instability that can prevent spatially stiff calculations from being run
completion, while preserving the favorable symmetry and discretization properties of
simple underlying grid. Although only 1D examples have been shown, other “enduran
type” calculations have been performed to test the robustness of the method. It is fo
that the robustness of the calculations is not adversely affected by the presence of n
nondynamical points if the complete interpolation procedure as detailed herein is img
mented. The spatial grid resolution is made more isotropic as is desired, and the regul;
conditions as a center of convergence is approached are automatically satisfied.
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